Asymptotic Enumeration of Sparse Uniform Linear Hypergraphs with Given Degrees

نویسندگان

  • Vladimir M. Blinovsky
  • Catherine S. Greenhill
چکیده

A hypergraph is simple if it has no loops and no repeated edges, and a hypergraph is linear if it is simple and each pair of edges intersects in at most one vertex. For n ≥ 3, let r = r(n) ≥ 3 be an integer and let k = (k1, . . . , kn) be a vector of nonnegative integers, where each kj = kj(n) may depend on n. Let M = M(n) = ∑n j=1 kj for all n ≥ 3, and define the set I = {n ≥ 3 | r(n) divides M(n)}. We assume that I is infinite, and perform asymptotics as n tends to infinity along I. Our main result is an asymptotic enumeration formula for linear r-uniform hypergraphs with degree sequence k. This formula holds whenever the maximum degree kmax satisfies r 4k4 max(kmax+r) = o(M). Our approach is to work with the incidence matrix of a hypergraph, interpreted as the biadjacency matrix of a bipartite graph, enabling us to apply known enumeration results for bipartite graphs. This approach also leads to a new asymptotic enumeration formula for simple uniform hypergraphs with specified degrees, and a result regarding the girth of random bipartite graphs with specified degrees. ∗Research supported by the Australian Research Council Discovery Project DP140101519.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic enumeration of sparse uniform hypergraphs with given degrees

Let r ≥ 2 be a fixed integer. For infinitely many n, let k = (k1, . . . , kn) be a vector of nonnegative integers such that their sum M is divisible by r. We present an asymptotic enumeration formula for simple r-uniform hypergraphs with degree sequence k. (Here “simple” means that all edges are distinct and no edge contains a repeated vertex.) Our formula holds whenever the maximum degree kmax...

متن کامل

Enumeration of Connected Uniform Hypergraphs

In this paper, we are concerned in counting exactly and asymptotically connected labeled b-uniform hypergraphs (b ≥ 3). Enumerative results on connected graphs are generalized here to connected uniform hypergraphs. For this purpose, these structures are counted according to the number of vertices and hyperedges. First, we show how to compute step by step the associated exponential generating fu...

متن کامل

Asymptotic Enumeration of Sparse Multigraphs with Given Degrees

Let J and J∗ be subsets of N such that 0, 1 ∈ J and 0 ∈ J∗. For infinitely many n, let k = (k1, . . . , kn) be a vector of nonnegative integers whose sum M is even. We find an asymptotic expression for the number of multigraphs on the vertex set {1, . . . , n} with degree sequence given by k, such that every loop has multiplicity in J∗ and every non-loop edge has multiplicity in J . Equivalentl...

متن کامل

Enumeration of Unlabeled Directed Hypergraphs

We consider the enumeration of unlabeled directed hypergraphs by using Pólya’s counting theory and Burnside’s counting lemma. Instead of characterizing the cycle index of the permutation group acting on the hyperarc set A, we treat each cycle in the disjoint cycle decomposition of a permutation ρ acting on A as an equivalence class (or orbit) of A under the operation of the group generated by ρ...

متن کامل

Phase Transition of Random Non-uniform Hypergraphs

Non-uniform hypergraphs appear in various domains of computer science as in the satisfiability problems and in data analysis. We analyse a general model where the probability for an edge of size t to belong to the hypergraph depends of a parameter ωt of the model. It is a natural generalization of the models of graphs used by Flajolet, Knuth and Pittel [1] and Janson, Knuth, Luczak and Pittel [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016